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1 Introduction: a trilemma

My starting point is a classical puzzle about counterfactuals in natural language.
Counterfactuals seem to satisfy three logical constraints that are individually
plausible, but jointly inconsistent.

Constraint #1. Counterfactuals invalidate Antecedent Strengthening. I.e., one
cannot replace the clause appearing in a counterfactual antecedent with a stronger
one and preserve truth value.

Failure of Antecedent Strenghtening ϕ�ψ 6� ϕ+�ψ
(with ϕ+ �ϕ, ϕ 6�ϕ+)

The argument for this constraint (Stalnaker 1968, Lewis 1973a, 1973b) is that
discourses that exemplify violations of Antecedent Strengthening—so-called
Sobel sequences—can be heard as consistent.

(1) If the US threw its weapons into the sea, there would be war.
If the US and all other nuclear powers threw their weapons into the sea,
there would not be war.

Constraint #2. Counterfactuals validate Simplification of Disjunctive Antecedents.
I.e., a counterfactual with a disjunctive antecedent entails the counterfactuals
whose antecedents are the individual disjuncts.

Simplification (ϕ∨ψ)�χ � ϕ�χ, ψ�χ

The argument for this constraint is that this pattern seems systematically validated
by counterfactuals with disjunctive antecedents. For example:
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(2) If Alice or Bob went to the party, the party would be fun.

a.   If Alice went to the party, the party would be fun.
b.   If Bob went to the party, the party would be fun.

Constraint #3. Counterfactuals validate Substitution of Logical Equivalents
(SLE) in antecedent position. I.e., replacing an antecedent with a logically
equivalent antecedent preserves truth value.

Substitution ϕ�ψ � ϕ′�ψ
(with ϕ and ϕ′ logically equivalent)

The argument for this constraint is theoretical, rather than empirical. Possible
worlds semantics provides an elegant account of counterfactuals, which fits
well into a general account of linguistic modality (Kratzer 1981a, 1981b, 1986,
1991, 2012). But this semantics is intensional, i.e. validates the replacement of
necessarily equivalent clauses in all positions. A fortiori, it validates Substitution.

Unfortunately, if we hold on to a Boolean semantics for disjunction (i.e., if
we take ‘or’ to mean ‘∨’), Simplification and Substitution immediately entail
Antecedent Strengthening. Hence the three constraints are inconsistent and at
least one of them must go.1 The standard solution consists in retaining Failure of
Antecedent Strengthening and Substitution, and jettisoning Simplification. Coun-
terfactuals with disjunctive antecedents like (2) are an acknowledged problem,
but it is assumed that they can be accommodated via a local fix.

This paper argues that no local fix will do, and that the trilemma should push
us to reconsider some features of the semantics of conditionals. In particular,
the correct semantics for conditionals is hyperintensional and hence invalidates
Substitution. Similarly to several nonstandard accounts, this semantics makes
use of a notion of a truthmaker. But, differently from other truthmaker accounts,
this notion of a truthmaker is cognitive rather than metaphysical and is defined
exclusively via linguistic means. Truthmakers just are standard propositions;
which propositions they are is determined by facts about the syntactic structure
of antecedent clauses.

The key idea behind the account is that conditionals are alternative-sensitive.

1 Proof:

i. ϕ�ψ
ii. (ϕ∨ϕ+)�ψ (from i, by SLE)

iii. ϕ+�ψ (from ii, by SDA)

I will discuss later in the paper (§4) theories that try to account for the phenomenon by dropping
a Boolean semantics for disjunction.
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It is widely agreed that natural language includes expressions and mechanisms
that manipulate alternatives to the linguistic material that is pronounced. One
standard example is only. Consider:

(3) Only Alice came to the party.

On standard analyses, (3) presupposes that Alice came to the party, and asserts
that none of a set of alternative individuals did. This is captured by letting
only manipulate a set of alternatives. Roughly, alternatives are clauses that are
generated from the pronounced material by replacing parts of it. For example,
alternatives to (3) may be Bob came to the party, Cynthia came to the party, etc.
Similar mechanisms relying on alternatives inform contemporary accounts of
focus, scalar implicature, and so-called free choice effects (among other things).

I argue that, similarly, conditional antecedents are alternative-sensitive. In
particular, I use alternative-sensitive mechanisms to define a set of propositions—
ways for the antecedent to be true, or truthmakers—that are denoted by condi-
tional antecedents. The resulting truth conditions are, on a rough pass:

ðϕ�ψñ = true iff: the propositions p1, p2, . . ., pn that are ways
for ϕ to be true are such that the closest p1-, p2-, . . ., pn-worlds
make ψ true.

This semantics makes conditionals hyperintensional, since intensionally equiva-
lent sentences can have different alternatives (via their different syntactic struc-
ture). But this kind of hyperintensionality is different from that postulated by
existing truthmaker accounts. On the one hand, it is well-understood and inde-
pendently needed. On the other, it can be combined with standard tools from
possible worlds semantics for conditionals.

This semantics differs from existing truthmaker accounts also in one other
respect: it solves the trilemma by dropping both Substitution and Simplification
(though it gets close to vindicating the latter). This is also a welcome feature,
since it allows us to sidestep some vexing problems for standard truthmaker
accounts.

A word about the scope of the paper: issues concerning Simplification have
been discussed mostly in the literature on counterfactuals. But the data naturally
generalize to all kinds of conditionals. Here I assume that all conditionals have a
structurally uniform semantics and that my claims apply to conditionals across
the board.

After setting up some background in §2, I examine and discard existing
solutions in §3 and §4. §5-6 develop the positive account, and §7 closes the paper
with a brief theoretical discussion.
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2 Background

2.1 Comparative closeness semantics

In this section, I introduce a basic possible worlds semantics for conditionals.
I follow closely classical ordering semantics for counterfactuals as formulated
by Stalnaker (1968) and Lewis (1973a, 1973b). Contemporary semantics for
conditionals often diverge from ordering semantics in several ways, but the
differences are irrelevant for my purposes.2

The key element of Stalnaker/Lewis semantics is a relation of comparative
closeness�w. �w compares worlds with respect to their closeness to a benchmark
world w: w′�w w′′ says that w′ is closer to w than w′′. Both Stalnaker and Lewis
take �w to be a total preordering: �w is transitive, reflexive, and total (in the
sense that it is defined over all pairs of worlds). The basic function of �w is
singling out a set of worlds that verify the antecedent and that at the same time
are ‘maximal’, i.e. are such that no other world is more similar to w then they are.
Conditionals quantify over the maximal set of worlds so individuated. Using, as
is standard, ‘¹’ and ‘º’ for the interpretation function, here are schematic truth
conditions:3

¹ϕ�ψº�,w= true iff
for all w′ ∈ max�w

({w′: ¹ϕº�,w′ = true}), ¹ψº�,w′ = true

(where max�w
({w′: ¹ϕº�,w′ = true}) is the set of closest ϕ-worlds)

This says: all the maximally close�w
ϕ-worlds are ψ-worlds. For shorthand, we

can say that each counterfactual antecedent selects, on the basis of �w, a set of
worlds it quantifies over.

This semantics produces an elegant account of Sobel sequences. Consider:

(1) If the US threw its weapons into the sea, there would be war.
If the US and all other nuclear powers threw their weapons into the sea,
there would not be war.

2 Some versions of comparative closeness semantics (e.g. Veltman 1976, or Kratzer 1981a, Kratzer
1981b, 1986, 1991, 2012) exploit so-called premise sets rather than a closeness ordering. Others
(for example, von Fintel 2001 and Gillies 2007) remove some crucial elements from the semantics
proper and place them in a dynamic account of contextual information. These differences won’t
matter for my purposes. Premise semantics for counterfactuals are translatable into ordering
semantics (precisely, a subtype of ordering semantics is equivalent to premise semantics—see
Lewis 1981), and dynamic accounts suffer from the same problems I raise.

3 This is an approximation to both of Stalnaker and Lewis’s accounts. For Stalnaker, the ordering
singles out, for each world w, a unique world w′ that is closest to it. Lewis rejects the so-called
limit assumption, i.e. the assumption that there is a �w-maximal set of antecedent worlds.
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The set of maximally close US-throwing-weapons worlds need not overlap
with the set of maximally close US-and-other-nuclear-powers-throwing-weapons
worlds. In particular, the latter might be farther off than the former:

US throwing weapons

US and other nuclear powers
throwing weapons

This situation allows for both conditionals in (1) to be true, since the two an-
tecedents select distinct domains of quantification. Hence the discourse in (1) is
consistent.

Throughout the paper, I also make assumptions about the syntactic structure
of conditionals. With Kratzer (1981a, 1981b, 1986, 1991, 2012), I assume that
all conditionals are modalized statements. The if -clause is used to restrict the
background domain of quantification of the modal, which is usually called modal
base. For example, the structure of the first conditional in (1) is:

(4) [if the US threw its weapons into the sea] [would [there be war]]

Notice that the modal would has two propositional arguments: one is the propo-
sition expressed by the if -clause, the other the proposition expressed by the
consequent clause (usually called prejacent).

There is a large literature on how closeness should be interpreted for various
kinds of conditionals.4 These questions are orthogonal to all my main points in
this paper, so I ignore them throughout.

2.2 Disjunctive antecedents

Recall from the introduction: a conditional with disjunctive antecedents seems
to entail the conditionals with the two individual disjuncts as antecedents:5

4 Some classical papers for the case of counterfactuals are Fine 1975, Jackson 1977, Lewis 1979;
see Bennett 2003 for a useful overview. For some recent literature on the topic, see Schaffer
2004, Williams 2008.

5 The problem was noticed independently by Fine 1975 and Nute 1975, and has been discussed
extensively. For some treatments of disjunctive antecedents within a classical or minimally
modified comparative closeness framework, see Lewis 1977, Nute 1980, Klinedinst 2007 and
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(2) If Alice or Bob went to the party, the party would be fun.

a.   If Alice went to the party, the party would be fun.
b.   If Bob went to the party, the party would be fun.

Following suit on the literature, I use the label ‘Simplification’ for the phenomenon
exemplified by (2)–(2-b). (Notice that the label ‘Simplification’ does double
duty: it denotes both the phenomenon and the logical rule. I rely on context
to disambiguate.) The intuitions supporting Simplification can be sharpened by
considering the corresponding Sobel sequences:

(5) #If Alice or Bob went to the party, the party would be fun.
If Bob went, the party would be dreary.

The infelicity of (5) is unexpected on closeness semantics. Just assume that the
closest Anna-going-to-the-party worlds are all closer than the closest Bob-going-
to-the-party-worlds. Then the set selected by the two counterfactuals in (5) are
disjoint, hence (5) is predicted to be consistent.

To sum up the problem: the same semantics mechanism that delivers a
consistent reading of (1) also delivers a consistent reading of (5). Yet the data
systematically patterns in different ways in the two cases. The problem posed by
disjunctive antecedents is accounting for this phenomenon, and examining its
repercussions on the semantics of conditionals.

2.3 Roadmap

Attempts at capturing Simplification generally fall into one of two categories.6

The first assimilates it to scalar phenomena like implicature; the second resorts
to a semantics where disjunctive clauses denote sets of propositions. The next
two sections are devoted to discussing these accounts.

3 Simplification as a scalar implicature

One breed of accounts (see e.g. Klinedinst 2007, 2009, Schwarz 2014) tries to
assimilate Simplification to a well-understood scalar phenomenon, i.e. scalar
implicature (Grice 1975, Gazdar 1979, Sauerland 2004). Roughly, scalar im-

2009, Alonso-Ovalle 2009.
6 Early discussions of the problem (for example, Lewis 1977 and McKay & Van Inwagen 1977), often

endorse a different solution, i.e. that we just regiment conditionals with disjunctive antecedents,
à la Quine, as conjunctions of conditionals. Since then, the goal of a theory of counterfactuals
has shifted from regimentation to a genuine compositional semantics. In the modern context,
solutions in the style of Lewis and McKay & Van Inwagen are nonstarters.
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plicature is the phenomenon whereby sentences involving certain lexical items
(so-called ‘scalar’ items) systematically receive an interpretation that is stronger
than their basic meaning.7 I will say more about implicature in §5. For the
moment, let me just point to a typical example: a sentence involving some like
(6-a) is normally read as having the meaning in (6-b).

(6) a. Sarah talked to some of her students.
b. Sarah talked to some but not all of her students.

Like some, or is a paradigmatic example of a scalar item. Hence it is a plausible
hypothesis that Simplification is a kind of implicature, triggered by the presence
of disjunction.

Accounts in this strand proceed in two steps. First, they show how we can
use scalar reasoning to strengthened the antecedent:

ϕ∨ψ�χ   (ϕ∨ψ)+�χ

Then, they show that the conditional with the strengthened antecedent (contrary
to the conditional on its basic meaning) entails the two simplified conditionals.

(ϕ∨ψ)+�χ � ϕ�χ, ψ�χ

The distinctive feature of these accounts is that they preserve the basic form
of comparative closeness semantics. In particular, conditional antecedents still
denote a unique propositions (though not quite the one expressed by the basic
meaning of the antecedent clause).

For current purposes, it’s not important to focus on the precise mechan-
ics of scalar strengthening. All that I need is point out the final effect of this
strengthening as it applies to disjunctive antecedents. A conditional with dis-
junctive antecedent is taken to quantify over a ‘mixed’ set of worlds, i.e. a set of
worlds that includes some worlds verifying each disjunct. More precisely, scalar
strengthening enforces the following:

Diversity Condition (DC): The worlds that count as closest for
the purposes of evaluating a conditional of the form ðϕ∨ψ�χñ
include both ϕ- and ψ-worlds.

Once the strengthening captured by the Diversity Condition is in place, a condi-
tional with disjunctive antecedents entails the two simplified conditionals—at

7 Here I skirt over the issue whether implicatures are a purely pragmatic phenomenon, as in Grice’s
and neogricean accounts (Grice 1975, Gazdar 1979, Sauerland 2004), or a semantic one (for
proposals in this vein, see, among many, Chierchia 2004, 2013, Fox 2007, Chierchia et al. 2008).
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least as long as we consider conditionals involving universal quantification (more
on this shortly).

As an aside, let me notice that deriving the Diversity Condition is far from
trivial, even if we assume that scalar implicatures can be computed in conditional
antecedents. The best existing attempt is Klinedinst’s (2007, 2009). Klinedinst’s
derivation of the Diversity Condition passes through a switch to a plural semantics
for modals, i.e. a semantics where modals quantify over pluralities of worlds,
rather than individual worlds.8 Here I won’t worry about this part of the proposal.
Rather, I argue that, even if we grant that we can derive the Diversity Condition
as a kind of implicature, scalar accounts fail.

Before attacking scalar accounts, let me point to a desirable and important
prediction they make. Scalar implicatures are standardly taken to be an optional
mechanism. For example, while some normally receives a some but not all
interpretation, it need not when the context suggests otherwise, as showed
by the consistency of (7).

(7) Sarah talked to some of her students. In fact, she talked to all of them.

Similarly, Simplification is an optional effect. Consider:

(8) If Spain had fought with the Axis or the Allies, she would have fought
with the Axis. (McKay & Van Inwagen 1977)

Obviously (8) does not entail:

(9) If Spain had fought with the Allies, she would have fought with the Axis.

Below, I present further evidence that Simplification is an optional effect. I
take it as an important desideratum that we be able to predict the optionality of
Simplification. I will come back to this point in §6. Now let me state my case
against scalar accounts.

3.1 Argument #1: downward entailing environments

My first argument concerns so-called downward entailing (henceforth, DE)
environments. DE environments are linguistic environments that reverse the
direction of entailment. Classical examples are negation, verbs like doubt, and
quantifier phrases like no student.

(10) a. Jane runs⇒ Jane moves

8 While my final account of disjunctive antecedents is very different from Klinedinst’s, I am heavily
indebted to him for pointing out the relevance of the semantics of plurals to conditionals.
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b. Jane doesn’t move⇒ Jane doesn’t run
c. I doubt that Jane moves⇒ I doubt that Jane runs
d. No student moves⇒ No student runs

DE environments provide a test for distinguishing meaning effects that are hard-
wired into the basic semantics of a sentence from meaning effects that are the
result of scalar strengthening. The latter, but not the former, usually disappear
in DE environments.

For illustration, consider a paradigm example of scalar implicatures, i.e. the
exclusivity implicature of bare disjunctions: ðϕ or ψñ is usually strengthened
with the negation of ðϕ and ψñ. For example, (11-a) is normally read as having
the stronger meaning in (11-b).

(11) a. Jane talked to Mary or Sue.
b. ≈ Jane talked to exactly one of Mary and Sue.

But the stronger meaning disappears under a DE operator.

(12) a. It’s not the case that Jane talked to Mary or Sue.
b. 6≈ It’s not the case that Jane talked to exactly one of Mary and Sue.

(13) a. I doubt that Jane talked to Mary or Sue.
b. 6≈I doubt that Jane talked to exactly one of Mary and Sue.

(14) a. No student talked to Mary or Sue.
b. 6≈No student talked to exactly one of Mary and Sue.

(12-a) is not read as having the meaning in (12-b). If it did, then it could be
used to say that John either talked to none or both of John and Mary—which is
obviously not the case. Similarly, mutatis mutandis, for (13-a) and (14-a).

From a theoretical perspective, the disappearance of scalar implicatures in
DE environments is fully expected. Scalar implicatures are optional effects that
aim at increasing the information carried by a sentence. But, in environments
where the direction of entailment is reversed, they would produce an overall
weakening. Hence speakers have a preference for not computing implicatures in
these environments.

Another well-known family of scalar effects, i.e. free choice effects, also dis-
appear under DE operators. Free choice consists in the distributive interpretation
of certain linguistic phrases in the scope of existential quantifiers.9 A classical

9 The free choice effect was first pointed out by Von Wright 1968 and Kamp 1973; for some recent
accounts that characterize free choice as a kind of implicature, see Kratzer & Shimoyama 2002,
Fox 2007, Klinedinst 2007, Chemla 2010, Franke 2011, Alonso-Ovalle 2006, Chierchia 2013.
For examples of views that are not implicature-based, see (among many), Geurts 2005, Simons
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illustration involves, again, disjunction:

(15) Mary may go to Paris or Berlin.

a.   Mary may go to Paris.
b.   Mary may go to Berlin.

There is no agreement on the proper account of free choice, but most theorists
converge on the idea that it is a kind of implicature. The main argument (Kratzer
& Shimoyama 2002, Alonso-Ovalle 2006, Fox 2007) is just that it disappears in
DE environments:

(16) a. It’s not the case that Mary may go to Paris or Berlin.
b. 6≈ It’s not the case that: Mary may go to Paris and she may go to

Berlin.

(17) a. I doubt that Mary may go to Paris or Berlin.
b. 6≈ I doubt that: Mary may go to Paris and she may go to Berlin.

(18) a. No student may go to Paris or Berlin.
b. 6≈ No student is such that that: they may go to Paris and they may

go to Berlin.

My first argument is simple: differently from implicatures and free choice
effects, Simplification does not disappear in DE environments.10

(19) It’s not the case that, if Alice or Bob went, the party would be fun.

a.   It’s not the case that, if Alice went, the party would be fun.
b.   It’s not the case that, if Bob went, the party would be fun.

(20) I doubt that, if Alice or Bob went, the party would be fun.

a. I doubt that, if Alice went, the party would be fun.
b. I doubt that, if Bob went, the party would be fun.

(21) None of my friends would have fun at the party if Alice or Bob went.

a.   None of my friends would have fun at the party if Alice went.
b.   None of my friends would have fun at the party if Bob went.

This is surprising on a scalar view of Simplification, while it is expected on a
view that hardwires Simplification in the meaning of conditionals.

Incidentally, let me observe that the distributive mechanism exemplified

2005, Barker 2010.
10 This point is first made in Alonso-Ovalle 2006, pages 30-2, and attributed to Kratzer. Notice that

Alonso-Ovalle claims that Simplification persists exactly in the same form in DE environments,
contrary to what I say here and in §6.
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by (19) and (20) is slightly different from what we observed in unembedded
conditionals. If the conditional in (say) (20) was ‘distributed’ over the disjuncts,
as it happens for (2), it would mean:

(22) I doubt the following: it is both the case that, if Alice went to the party,
the party would be fun, and that, if Bob went to the party, the party
would be fun.

which is not what (20) says. I get back to this in §6.

3.2 Argument #2: probability operators

My second argument is based on an empirical observation: Simplification still
obtains with probably-conditionals, i.e. conditionals of the form ðIf ϕ, probably
ψñ. To see this, start by noticing that, intuitively, an assertion of (23) suggests
that (23-a) and (23-b) are true:

(23) If Alice or Bob went to the party, probably Mary went too.

a.   If Alice went to the party, probably Mary went too.
b.   If Bob went to the party, probably Mary went too.

Moreover, we can construct example where the Simplification reading is required
to make a probably-conditional true. Consider the following scenario:

Raffle. Sarah bought 40 tickets in a 100-ticket raffle. The tickets
she bought were numbered 31 to 70. The winning ticket was just
picked. We’re not told which ticket won, but we hear two rumors.
On the first, the winning ticket is among tickets 1 to 70; on the
second, it is among tickets 31 to 100.

Suppose that you say:

(24) If the winning ticket is between 1 and 70 or between 31 and 100,
probably Sarah won.

(24) has a true reading. This is a reading on which Simplification holds, and
(24) entails:

(25) a. If the winning ticket is between 1 and 70, probably Sarah won.
b. If the winning ticket is between 31 and 100, probably Sarah won.

Notice that we need the Simplification reading to make raffle true. (24) is not
true if it read as equivalent to:

11



(26) If the winning ticket is between 1 and 100, probably Sarah won.

Now, the problem for the scalar account is simply that it fails to predict the
Simplification readings of probably-conditionals like (23) and (24).

To explore the predictions of the scalar account, I need some assumptions
about probably and probably-conditionals. First, following Kratzer (1981b, 1991,
2012), I assume that if -clauses work as restrictors of the domain of quantification
(modal base) of modals. Moreover, following recent work (Yalcin 2010, Lassiter
2011, Holliday & Icard 2013), I assume that probably has a probabilistic semantics
(or at least a semantics that yields an equivalent logic). Roughly, ðprobably ϕñ
says that the probability of ϕ is higher than .5. These assumptions result in
intuitive truth conditions for probably-conditionals. ðIf ϕ, probably ψñ simply
says that the conditional probability of ψ, given ϕ, is higher than .5.11

Now, it’s easy to see that scalar accounts, combined with this basic semantics
for probably-conditionals, fail to predict Simplification. They key maneuver of
scalar accounts, recall, is using scalar reasoning to make the domain of quantifi-
cation of conditionals suitably diverse. For the case of probably-conditional, this
amounts to enforcing the following:

Diversity Condition∗ (DC∗): The worlds quantified over by a
conditional of the form ð if ϕ or ψ, probably χñ include both ϕ-
and ψ-worlds.

As we saw, for counterfactuals the analog of DC∗ is sufficient to derive Simplifica-
tion. This derivation is guaranteed by a special property of closeness orderings:
if the closest ϕ-or-ψ-worlds include a set of ϕ-worlds, then the latter also count
as the set of closest ϕ-worlds (ditto for ψ-worlds). Call this property ‘Persis-
tence’. Given the Diversity Condition, Persistence guarantees that, if all closest
ϕ-or-ψ-worlds make p true, the closest ϕ-worlds also make p true.12

11 More formally, and loosely following the semantics in Yalcin 2010: I assume that the denotation
of probably is relativized to a probability space parameter. A probability space is a pair 〈E, Pr〉 of
a set of possible worlds E and a probability measure Pr. Probably ϕ says that the probability of
the proposition expressed by ϕ according to Pr is greater than .5.

(27) ¹probably ϕºw,〈E,Pr〉 = true iff PrE({w′ : ¹ϕºw
′,〈E,Pr〉 = 1})> .5

(Where Prp(q) is understood as Pr(q|p).) Accordingly, in probably-conditionals the if -clause is
understood as restricting the epistemic space over which probabilities are distributed.

(28) ¹if ϕ, probably ψºw,〈E,Pr〉 = true iff PrE∩¹ϕº({w′ : ¹ψºw
′,〈E,Pr〉 = 1})> .5

12 A formal definition of Persistence, in the context of Lewis semantics with limit assumption:

Persistence. For any set of worlds S, S′ s.t. S′ ⊆ S: if S′∩ max�w
(S) 6= ∅,
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But no analog of Persistence holds for probably-conditionals. It might be that,
within the set of ϕ-or-ψ-worlds, the p-worlds are assigned a greater amount
of probability than the non-p-worlds and that, at the same time, within the
set of ϕ-worlds, the non-p-worlds have greater probability. Here is a diagram
representing this situation (the size of the cells represents amount of probability):

ϕ

ψ

pnot p

Hence it might be that (i) the Diversity Condition∗ is satisfied, (ii) ð if ϕ or ψ,
probably χñ is true, and (iii) ð if ϕ, probably χñ is false. As a result, scalar
accounts cannot predict Simplification in probably-conditionals.

3.3 Argument #3: nonclosest worlds

My third argument exploits conditional logic. Consider again:

(2) If Alice or Bob came, the party would be fun.

We can prove that, in certain contexts, the set of worlds selected by the antecedent
of (2) is the union of two discontinuous segments of the ordering (i.e. two
segments such that all worlds in the first segment are strictly closer than all
worlds in the second):

max�w
(S′) =max�w

(S)∩S′

As Schlenker 2004 points out, Persistence generalizes a property entailed by condition 4 of
Stalnaker’s 1968 semantics. Charlow 2013 also discusses Persistence (under the label ‘Stability’)
for deontic selection functions.
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This situation is straightforwardly incompatible with closeness semantics, and
suggests that the basic assumption behind scalar account fails: disjunctive an-
tecedents do not denote a unique proposition.

The argument requires some setup. First, I borrow a scenario and some
judgments from Lewis (1973a, p. 33):

Otto is Waldo’s successful rival for Anna’s affections. Waldo still
tags around after Anna, but never runs the risk of meeting Otto.
Otto was locked up at the time of the party, so that his going to it
is a far-fetched supposition; but Anna almost did go.

(29) If Anna had gone to the party, Waldo would have gone. Ø

(30) If Otto had gone to the party, Anna would have gone. Ø

(31) If Otto had gone to the party, Waldo would have gone. %

(29)–(31) is one of the triads Lewis uses to show that transitivity (below) is
invalid for counterfactuals.

Transitivity ϕ�ψ, ψ�χ � ϕ�χ

Second, I observe that Simplification persists also in the backdrop of this scenario.
For example, (32) is still infelicitous.

(32) #If Otto or Anna had gone, it would have been a lovely party.
If Otto had gone, it would have been a dreary party.

Finally, I assume that the Diversity Condition holds for (32) in the relevant
context.

The judgments about (29)–(31), together with the Diversity Condition, yield
a surprising conclusion. Configurations like (29)–(31) force certain facts about
the ordering. In particular, Anna-worlds must be strictly closer than Otto-worlds.
This descends from a general fact about transitivity-violating configurations.
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Fact. Consider any triplet of counterfactuals of the form:

(a) ϕ�ψ
(b) ψ�χ
(c) ϕ�χ

if (a), (b) are true and (c) false, then the closest ψ-worlds must
be strictly closer than the closest ϕ-worlds.13

Hence the judgments on (29)–(31) require that the closest Anna-worlds must
be closer than the closest Otto-worlds. Now consider again:

(33) If Otto or Anna had come, it would have been a lovely party.

By the Diversity Condition, (33) quantifies over both Otto and Anna worlds.
Hence (33) quantifies over discontinuous segments of the ordering:

13 PROOF. I consider a Lewis semantics without limit assumption; the result follows immediately
for stronger semantics, including a Lewis-style semantics with limit assumption and Stalnaker
semantics. The truth conditions of (a)–(c) are, respectively:

(a) ∃v ∈ϕ :∀u((u�w v)⊃ u∈ (ϕ ⊃ψ))
(b) ∃v ∈ψ :∀u((u�w v)⊃ u∈ (ψ⊃χ))
(c) ∃v ∈ϕ :∀u((u�w v)⊃ u∈ (ϕ ⊃χ))

Now, consider (b): it says that there is a ψ-world (call it ‘wψ’) such that all worlds at least as
close as it make true the material conditional ðψ⊃χñ. In the Lewis framework, the claim stated
in FACT translates as follows:

For all ϕ-worlds w′: wψ ≺w w′

Suppose, for reductio, that this is not the case. Then there is a ϕ-world, call it ‘w∗’, such that
w∗�w wψ. Now, consider (a): it says that there is a ϕ-world such that all worlds at least as close
as it validate the material conditional ðϕ⊃ψñ. There are two cases: either (i) w∗ is such a world;
or (ii) there is some w′ �w w∗ that is such a world. In either case, we have that there is a wϕ
that works as a witness of (b), and such that wϕ �w w∗. By the transitivity of �w, we have that
wϕ �wψ. Now, by (a), we know that all worlds at least as close to wϕ validate ðϕ ⊃ψñ. Since
wϕ �wψ, we know that those worlds also validate ðψ⊃χñ. But then, by the transitivity of ⊃, we
have that all worlds at least as close to wϕ validate ðϕ ⊃χñ; i.e., ∀u((u�w wϕ)⊃ u∈ (ϕ ⊃χ)).
But now, by existential generalization on wϕ, we get exactly (c), i.e. the truth condition of
ðϕ�ψñ. Hence ðϕ�ψñ is true after all. Contradiction.

I should note that the result does not follow for a Kratzer-style semantics with partial
orderings. But, in that case, the point can be made by replacing (31) with:

(i) If Otto had gone to the party, Waldo would not have gone.

(i) sounds true in Lewis’s party scenario. In Kratzer’s semantics, this gives us strictly more
information than the falsity of (31) and allows us to prove that (33) quantifies over separate
segments of the ordering. The proof is left as an exercise to the reader.
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anna going to the party

otto going to the party

One natural conclusion is that that disjunctive antecedents do not denote a
unique proposition. Rather, they somehow denote two propositions—i.e. the two
propositions individually denoted by each disjunct. Let me now turn to accounts
that pursue this idea.

4 Simplification in alternative semantics

4.1 Disjunctive clauses denote sets of propositions

A second breed of accounts tries to explain Simplification by resorting to a so-
called alternative semantics for disjunction. Alternative semantics frameworks are
derived from Hamblin’s seminal work on questions (Hamblin 1973). The central
idea is that several linguistic constructions, including disjunctive sentences,
denote sets of propositions. Analyses of Simplification in this strand have been
proposed by Alonso-Ovalle 2006, 2009 and van Rooij 2006. For concreteness,
here I follow the account in Alonso-Ovalle 2009.14

14 There is a close relative of alternative semantics account that for reasons of space I won’t discuss
here—i.e., accounts that link directly conditionals and questions. (For some examples, see Levi
1996 in the formal epistemology tradition, and Starr 2014 in the semantics tradition. See also
Rawlins 2013 for a treatment of so-called unconditionals along these lines.) These accounts treat
conditional suppositions as involving questions, understood as partitions on (a subset of) logical
space. The idea of using questions to account for Simplification, while at the same time bridging
the semantics of conditionals with that of questions is very appealing. But this idea runs into an
immediate problem: the alternative involved in Simplification don’t exploit a partition. Consider
the following example:

(i) If one of Al, Beth, and Charlie came to the party, another one of them will come too.

(i) has a Simplification reading—i.e. a reading on which it entails:

(ii) a. If Al came, one between Beth and Charlie would come too.
b. If Beth came, one between Al and Charlie would come too.
c. If Charlie came, one between Al and Beth would come too.
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On Alonso-Ovalle’s account, a disjunctive clause denotes not a single propo-
sition, but rather the set of the propositions denoted by the disjuncts:

¹ϕ∨ψº= {¹ϕº,¹ψº}

I call the propositions appearing in the denotation of a disjunctive clause ‘propo-
sitional alternatives’ (to distinguish them from alternatives tout court, which I
take to be linguistic objects). If -clauses work as universal quantifiers over the
set of propositional alternatives denoted in the antecedent. Schematically, the
resulting truth conditions for conditionals are:

(34) ¹ϕ∨ψ�χº�,w = true iff:
for all p ∈ {¹ϕº�,w,¹ψº�,w}, for all w′ ∈ max�w

(p), ¹ψº�,w′ = true

This immediately yields a semantic vindication of Simplification.
The semantics that I develop in §5–6 shares many features with (34). In

particular, contrary to orthodoxy and together with Alonso-Ovalle, I assume that
conditional antecedents have a set-type denotation. But there is a substantial
difference.

In Alonso-Ovalle’s system, propositional alternatives are generated directly
by the lexical meaning of or. One effect of this choice is that the generation of
propositional alternatives in Alonso-Ovalle’s system is ‘local’, in the following
sense. Alternatives are generated at a certain stage in the compositional com-
putation, and are then available to combine with items that take scope above
disjunction. Accounts that are local in this sense are problematic; let me illustrate
why.

4.2 The problem: too few alternatives

Using the meaning of or to generate propositional alternative yields wrong
predictions: in short, we end up getting too few alternatives. For illustration,
consider (35), which I take to have the logical form in (36):

(35) Every student read War and Peace or Anna Karenina.

(36) Every student [λ1. [x1 read War and Peace or x1 read Anna Karenina]]

Propositional alternatives enter the compositional computation when or is
interpreted: hence, in this case, before the complex predicate λ1. [x1 read War
and Peace or x1 read Anna Karenina] is combined with the quantifier every

Now, it is crucial for this reading to be available that the antecedents of the conditionals in (ii)
be understood as compatible—otherwise, the Simplification reading would be contradictory.
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student. The complex predicate denotes a set of two properties (functions from
individuals and worlds to truth values), as indicated below:

(37) ¹read W&P or AKº =
{λx . λw. x read W&P in w, λx . λw. x read AK in w}

The two elements of this set combine ‘pointwise’ with the meaning of the quanti-
fier every student.15 The end result is that (35) denotes a set of two propositions:

(38) ¹(35)º =
{λw. Every student read AK in w, λw. Every student read W&P in w}

But these alternatives are not enough. Consider the following discourse:

(39) # If every student read Anna Karenina or War and Peace, the world
would be a better place.
But if some students read Anna Karenina and some read War and Peace,
the world would not be a better place.

Like our running example (2), (39) is a bad Sobel sequence. The obvious expla-
nation is that the first conditional in the sequence entails a sentence inconsistent
with the second conditional, again via Simplification:

(40) If every student read Anna Karenina or War and Peace, the world would
be a better place.

 If some students read Anna Karenina and some read War and Peace,
the world would be a better place.

But Some students read AK and some students read W&P is not among the alterna-
tives to All students read AK and W&P. Hence an Alonso-Ovalle-style semantics
misses the prediction that (39) is infelicitous.16

It may be that we can fix the problem while remaining in a ‘local’ framework.

15 As is standard in Hamblin-style systems, Alonso-Ovalle uses a rule of Pointwise Functional
Application, which is used to handle set-type denotations.

Pointwise Functional Application (PFA)
If [[α]]⊆ D〈σ,τ〉 and [[β]]⊆ Dτ,
then [[α(β)]] = {c ∈τ : ∃a ∈ [[α]]∧∃b ∈ [[β]] : c= a(b)}

Informally, PFA mandates combining each element in a set with each element in every other set.
Notice also that I’m skirting over the fact that the LF in (36) involves lambda-abstraction. This
introduces nontrivial complications that are orthogonal to my main point here. (See Novel &
Romero 2010 for the functioning of binding in Hamblin semantics.)

16 Many thanks to [name omitted for blind review] for extended discussion on this point, and for
pointing out the existence of the problem in the first place.
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But the fix is not going to be trivial.17 Rather than pursing this, in the next section
I pursue a ‘global’ account, where propositional alternatives are generated at the
end of the compositional computation.

5 Alternative-sensitivity

My basic proposal is that conditional antecedents denote sets of propositions,
each of which specifies a way for the antecedent to be true. These propositions
may combine ‘pointwise’ with the main modal in a conditional, giving rise to
Simplification. Roughly, the resulting truth conditions are:

ðϕ�ψñ = true iff: the propositions p1, p2, . . ., pn that are ways
for ϕ to be true are such that the closest p1-, p2-, . . ., pn-worlds
make ψ true.

This proposal immediately solves the problems raised in §3. First, the distribution
effect is semantic, hence it is expected to persist in all linguistic environments.
Second, since it is tied to the semantics of if -clauses, we expect the effect to take
place in all conditionals, including probably-conditionals. Finally, if the closest
worlds verifying each of the two disjuncts are at different distances from the
actual world, the proposal allows for quantification over nonclosest worlds. I
will also explain how the problems in §4 are addressed.

While the basic idea is intuitive, it’s unclear how to define, in a systematic
and principled way, the notion of a way for a sentence to be true. This section
shows how to do this merely on the basis of syntactic alternatives.

5.1 Alternatives

Given a sentence S, speakers systematically take some sentences, and not others,
to work as alternatives for S. For example, a conjunctive sentence like (41-b)
normally works as an alternative for a disjunctive sentence like (41-a).

(41) a. Johanna talked to Mary or Sue
b. Johanna talked to Mary and Sue

17 The reason: to generate the right propositional alternatives, we need information about lexical
items that take scope above disjunction when we are computing the meaning of the disjunctive
phrase. For example, we would need the semantics to somehow ‘see’ that there is a universal
quantifier above when computing the meaning of the complex predicate λ1. [x1 read War and
Peace or x1 read Anna Karenina]. It’s unclear how this can be done compositionally.
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This is showed by facts about implicature. Scalar implicatures are generated
by negating more informative (i.e. stronger) alternatives to a sentence. The
scalar implicature normally generated by (41-a) shows that (41-b) works as an
alternative to it (and hence is what is negated in order to produce the implicature.)

(42) Johanna talked to Mary or Sue
  Johanna did not talk to both Mary and Sue

Conversely, (43), even though it is a relevant and more informative variant of
(41-a), does not work as an alternative to it.

(43) Johanna talked to exactly one between Mary and Sue

If it did, then an utterance of (41-a) would implicate (via negation of (43)) that
Johanna talked to both Mary and Sue—which is obviously wrong.

The problem of specifying alternatives is the problem of specifying, in a
principled way, which sentences work as alternatives of which others. Traditional
accounts of alternatives merely stipulate that alternatives are part of the meaning
of lexical items. For example, it is part of the lexical meaning of or that or is
on a ‘lexical scale’ that also includes and. Recently, a nonstipulative option has
emerged, thanks to Katzir 2007. In what follows, I’m going to assume Katzir’s
theory of alternatives, though nothing in my account depends on this.18

Katzir’s account is built around two principles: relevance and complexity.
Alternatives to a sentence S are all and only those sentences that are relevant
in the context and no more complex than S. The notion of complexity here is
technical. Roughly, S′ counts as at most as complex as S just in case we can derive
S′ from S by either deleting syntactic constituents from S, or replacing them
with syntactic items that are part of a given substitution source. The substitution
source is defined as the union of the whole lexicon with items that have been
pronounced in the context. I relegate the precise formulation of Katzir’s algorithm
to a footnote.19

18 The problem of explaining why (41-b), but not (43), is an alternative to (41)-a, is called ‘symmetry
problem’. The symmetry problem was first noticed by Kroch 1972 (standing to the historical
information in Fox 2007), and earned its name in class notes by Kai von Fintel and Irene Heim at
MIT. For a contemporary statement of the problem, see Sauerland 2004. For approaches based
on lexical scales (commonly called Horn scales), see Horn 1972, Gazdar 1979, Horn 1989. For a
refinement of Katzir’s approach, see Fox & Katzir 2011.

19 First, we define the notion of a structure being at most as complex as another in context c
(represented as ‘�c ’):

S′ �c S iff S′ can be derived from S by successive replacements of syntactic
sub-constituents of S with elements of the substitution source for S in c, SS(S,c)

(The notion of a sub-constituent is a standard one in syntax; see e.g. Carnie 2013.) Then we
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5.2 Stability

This section is the heart of the paper. It describes the algorithm for generating
‘ways for a sentence to be true’—or, for short, truthmakers of a sentence. While
the starting point—i.e. what alternatives are in play—is shared with existing
literature, the algorithm is entirely new.

I allow myself to be sloppy in two ways. First, while alternatives are syntactic
items, sometimes I treat them as propositions. Second, I suppress all reference
to context. In both cases, the sloppiness is harmless.

Here is the basic proposal. Let ALTS be the set of alternatives to S. The ways
for S to be true are propositions that are (a) stronger than that expressed by S,
and (b) individuated by the subsets of ALTS that are stable and minimal. Stability
is the key new notion. I say that a subset of ALTS is stable iff it is consistent with
the negation of every alternative that is not a member of it. The intuition is that a
set of alternatives is stable just in case it contains enough information to stand
alone—even if all other alternatives are false, it’s still consistent to suppose that
all sentences in the set are true.

I state formal definitions in a few paragraphs, but let me walk you through
an example first:

(44) Otto or Anna went to the party

For the time being, I simply assume that the alternatives to (44) are:

(45)











Otto or Anna went to the party O∨A
Otto went to the party O
Anna went to the party A
Otto and Anna went to the party O∧A











(Some extra alternatives may be present—for example, if a third individual,
John, is salient in the context, John went to the party will be an alternative. I
show below that this is irrelevant.) Crucially, the alternatives in (48) can be
ordered by logical strength (stronger alternatives are above weaker ones):

define the notion of a substitution source for a sentence S in a context c, as follows:

The substitution source for sentence S in context c is the union of:

i. The lexicon;

ii. the subconstituents of S;

iii. the set of salient constituents in C .
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O∧A

O A

O∨A

We proceed by checking what the stable subsets of ALT(44) are. It’s easy to see
that these subsets are {O∨A,O}, {O∨A,A}, and ALT(44) itself. For a comparison,
consider {O∨A}: this set is not stable, since it’s inconsistent when supplemented
with the negation of all the other alternatives.

Of all the stable subsets of ALT(44), we take only the minimal ones—i.e. the
ones that are not proper supersets of any other stable subset of ALT(44).

20 We
are left with {O∨A,O} and {O∨A,A}:

O∧A

O A

O∨A

The last step is using this machinery to capture the notion of a way for
a sentence S to be true—what I call a truthmaker of S. This step is simple.
First, we use sets of alternatives to individuate propositions. In particular, we

20 Why minimality? One might think that all the stable alternative sets to the antecedent should be
considered. But I have learned of decisive examples from [name omitted for blind review] (p.c.).
Here is a variant on his examples:

Scenario. The three passengers in a small plane, contrary to the pilot’s recom-
mendations, clustered on the left-hand side of the plane because they enjoyed
sitting together. As a result, the plane was unbalanced and crashed.

(i) If some passengers had sat on the right-hand side, the plane would not
have crashed.

(i) seems true. This suggests that the relevant ‘ways for the antecedent to be true’ won’t include
the way characterized by the strongest alternatives in the set. If the relevant ‘ways’ included the
proposition All passengers sat on the right-hand side, the conditional would not be true (since
then the plane would still have crashed).
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take the propositions denoted by the conjunction of all sentences in each set of
alternatives. In our example, we obtain the proposition that Otto went to the
party—call this ‘o’—and the proposition that Anna went to the party—call this
‘a’. Then, of the propositions obtained in this way, we keep only those that entail
S itself. Since it’s useful to have a term, I call the propositions that pass this
test the truthmakers of S. In our example, both o and a entail the proposition
expressed by (44), hence they’re both truthmakers of (44).

The entailment condition—i.e., the condition that a truthmaker must en-
tail the proposition expressed by the antecedent—also screens off irrelevant
alternatives. I discuss a case in detail in a footnote.21

5.3 Truthmakers for complex sentences

In §4, I pointed out that Alonso-Ovalle’s algorithm is ‘local’: alternatives are
generated in the course of the compositional computation of the relevant clause.
Conversely, the stability algorithm is ‘global’, in the sense that it generates al-
ternatives only at the end of the compositional computation of the clause. This
difference is at the basis of a difference in predictions about complex sentences.
Consider again (35):

(35) Every student read War and Peace or Anna Karenina.

We saw that (35) was problematic for Alonso-Ovalle’s account, which missed the
prediction that (47) is a truthmaker of (35).

(47) Some students read Anna Karenina and some read War and Peace.

21 Consider again (44). Suppose that a third individual—call him ‘John’—is contextually relevant,
so that he affects what alternatives are computed. The alternatives to (44) now are:

(46)















































Otto or Anna went to the party O∨A
Otto went to the party O
Anna went to the party A
Otto and Anna went to the party O∧A
John went to the party J
Otto or John went to the party O∨ J
John or Anna went to the party J ∨A
Otto and John went to the party O∧ J
John and Anna went to the party J ∧A















































The minimal stable subsets of the alternative set are: {O∨A,A}, {O∨A,O}, {J ∨A,J}, {J ∨A,A}.
By conjoining the clauses in each set, we get three propositions: Otto went to the party, Anna
went to the party, John went to the party. But only the former two entail the prejacent and hence
qualify as truthmakers.
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Let me now show that, on the contrary, the stability algorithm yields the right
prediction here. Assume, in line with Katzir’s theory, that (35) has eight alterna-
tives, generated by considering substituted for the quantifier every student and
for the disjunction:

(48)











































Every student read War and Peace and Anna Karenina ∀(A∧W )
Every student read Anna Karenina ∀(A)
Every student read War and Peace ∀(W )
Every student read War and Peace or Anna Karenina ∀(A∨W )
Some students read War and Peace and Anna Karenina ∃(A∧W )
Some students read Anna Karenina ∃(A)
Some students read War and Peace ∃(W )
Some students read War and Peace or Anna Karenina ∃(A∨W )











































Plotting them by strength, we obtain:22

∀(A∧W )

∀(A) ∀(W )

∀(A∨W )

∃(A) ∃(W )

∃(A∨W )

There are three minimal stable subsets of ALT(35), each of which yields one
truthmaker:

22 In the diagram, I’m leaving out the existential-conjunctive alternative Some student(AK ∧ W&P),
because it doesn’t end up figuring in any of the minimal stable subsets of ALT(35). Also, I am
assuming that the universal alternatives entail the corresponding existential ones. (On the
assumption that universal determiners presuppose existence, the relevant notion of entailment is
Strawson-entailment; see von Fintel 1999.)
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∀(A)
∀(A∨W )
∃(A)
∃(A∨W )





















∀(W )
∀(A∨W )
∃(W )
∃(A∨W )





















∀(A∨W )
∃(A)
∃(W )
∃(A∨W )











⇓ ⇓ ⇓
Every student read AK Every student read W&P Some students read AK

and some students read W&P

In combination with the semantics for conditionals in §6, this will predict the
infelicity of (39), as desired.

(39) #If every student read Anna Karenina or War and Peace, the world would
be a better place.
But if some students read Anna Karenina and some read War and Peace,
the world would not be a better place.

Hence a theory based on the stability algorithm has an empirical advantage over
Hamblin-style semantics.

Technicalities

Following common usage, I use ‘σ¬’ to denote the set of negations of the sentences
in σ; and I use the notion of a set of sentences being consistent with another set
of sentences as a natural extensions of the notion of consistency for propositions.

I say that a subset of ALTS is stable with respect to ALTS iff it is consistent
with the negation of every alternative that is not a member of it.

σ⊆ ALTS is stable (with respect to ALTS) iff σ∪(ALTS−σ)¬ 6�⊥

This is combined with minimality in the obvious way.

σ⊆ ALTS is minimal stable (with respect to ALTS) iff

(i) σ is stable with respect to ALTS, and

(ii) ¬∃σ′: σ′ is stable and σ′ ⊂σ.

Notice that, on this definition: (a) stability immediately entails consistency; (b)
the stable subsets of ALTS are closed under weaker alternatives.

The notion of minimal stability is related in interesting ways to other notions
appearing in the literature on alternatives and implicature. I discuss these
connections in a footnote.23

23 First, minimal stability is something like the converse of the notion that Danny Fox (2007) dubs
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Finally, here is the definition of a truthmaker.

p is a truthmaker of S iff

(i) for some σ⊆ALTS such that σ is maximal stable with respect
to ALTS, ¹
∧

σº = p; and

(ii) p � ¹Sº.

The truthmakers of S are the propositions denoted by the conjunctive closure of
minimal stable sets of alternatives to S, and that are at least as strong as S.

The denotation of if -clauses on the new semantics is just the set of truthmakers
of the if -clause.

¹if ϕº�,w = {p: p is a truthmaker of ϕ}

6 Conditionals as descriptions

I have explained how truthmakers are derived. But I have not explained what
role they play in an overall semantics for conditionals. A first, natural suggestion
is that conditionals quantify universally over truthmakers.

ðϕ�ψñ = true iff: for all truthmakers p′ of ϕ, the closest p′-
worlds make ψ true.

This is the route that existing version of truthmaker semantics (e.g.Van Fraassen
1969, Fine 2012b, 2012a) take, and that leads to a semantic vindication of
Simplification. This route is natural, but wrong. In this section, I propose a better
alternative: conditionals refer to, rather than quantify over, sets of propositions.
The difference is structurally analogous to that between universally quantified
determiner phrases (like all boys) and plural definite descriptions (like the boys).

‘maximal exclusion’. A maximal exclusions of S is a maximal subset of alternatives σ ⊆ ALTS
such that the negation of all the alternatives in σ is consistent with S. For example, the maximal
exclusions of ALT(44) are {O,O∧A} and {A,O∧A}. Fox uses maximal exclusions to characterize the
algorithm that generates scalar implicature. Second, minimal stable sets of alternatives seems to
correspond to the alternatives that Chierchia (2013) dubs ‘domain alternatives’. Chierchia gives a
semi-formal characterization of domain alternatives for a disjunction or an existential quantifier
as ‘all the subdomains of the domain of disjunction/existential quantification’ (2013, p. 116;
Chierchia relies on the idea that disjunction can be understood as an existential quantifier over
the disjuncts). It’s unclear how this formulation can be generalized to cases where the relevant
lexical material doesn’t involve a quantifier domain argument. Minimal stability improves on
Chierchia’s characterization, both because it’s more precise and because it’s more general.
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The resulting semantics is similar to that using universal quantification, but
handles much better a number of problem cases.24

6.1 Homogeneity

My argument against the validity of Simplification connects to the data about
distribution effects in DE environments.

(19) It’s not the case that, if Alice or Bob went, the party would be fun.

a.   It’s not the case that, if Alice went, the party would be fun.
b.   It’s not the case that, if Bob went, the party would be fun.

(20) I doubt that, if Alice or Bob went, the party would be fun.

a.   I doubt that, if Alice went, the party would be fun.
b.   I doubt that, if Bob went, the party would be fun.

(21) None of my friends would have fun at the party if Alice or Bob went.

a.   None of my friends would have fun at the party if Alice went.
b.   None of my friends would have fun at the party if Bob went.

(19)–(21) show that Simplification persists, in some form, in DE environments.
But they also show that it doesn’t work the way it should if Simplification was
valid. In that case, (20) (say) would mean:

(49) I doubt the following: it is both the case that, if Alice went to the party,
the party would be fun, and that, if Bob went to the party, the party
would be fun.

The problem extends systematically to all occurrences of conditionals in DE
environments. This is a strong argument against the semantic validity of Simpli-
fication.25

24 The semantics builds on existing accounts of correlatives: in particular, see Dayal 1996 for the
claim that correlative constructions should be treated on the model of descriptions. See also
Schlenker 2004 for the claim that conditionals work as descriptions.

25 Alonso-Ovalle 2006, pages 30-2, makes a different empirical claim. His example (attributed to
Kratzer) uses the DE locution It is plain false that:

(i) It is plain false that Hitler would have been pleased if Spain had joined Germany or the
U.S.

Alonso-Ovalle claims that (i) sounds true, and that hence we have evidence that conditionals do
involve universal quantification over propositional alternatives. I agree that the judgment about
(i) is less clear than (19) or (20), but I dispute that the locution it is plain false that works as a
reliable diagnostic, since it seems to negate presuppositions as well. (Compare: It is plain false
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Luckily, the pattern displayed by (19) and (20) is well-known and naturally
suggests an account. Here I illustrate it via a parallel with plural definite de-
scriptions, though several items in language exhibit it.26 In their unembedded
occurrences, plural descriptions are interpreted universally:

(50) The boys went swimming.
≈ Each boy went swimming.

But this interpretation disappears in DE environments. There the universal
quantifier appears to take scope outside the DE element.

(51) I doubt that the boys went swimming.
6≈ I doubt that each boy went swimming.
≈ For each of the boys, I doubt that he went swimming.

Schematically (‘OPDE ’ stands for ‘DE operator’):

The Fs are G ⇒ For each individual x that is F , x is G

OPDE [The Fs are G]⇒ For each individual x that is F , OPDE[x is G]

This puzzling effect is known as homogeneity effect27 (the intuition is that the set
of boys is homogenous with respect to the property denoted by the predicate:
either all boys possess it, or none does). My observation is that conditionals
generate an analogous homogeneity effect with respect to the truthmakers of their
antecedents. Schematically (and allowing for some use-mention sloppiness):

ϕ�ψ⇒ For each truthmaker ρ of ϕ, ðρ�ψñ

OPDE[ϕ�ψ]⇒ For each truthmaker ρ of ϕ, ðOPDE [ρ�ψ]ñ

Given this parallel, I take the semantics of plural descriptions as a guide to the
semantics of conditional antecedents. The analogy between descriptions and
conditionals is not new: my account connects naturally to other theories on the
market (Bittner 2001, Schein 2003, Schlenker 2004). The key difference is that
these theories analyze conditionals as descriptions of worlds, while I analyze
them as descriptions of truthmakers.

that the King of France is bald, since there is no King of France seems also felicitous.) (19)–(21)
provide a better test.

26 An incomplete list includes: generic statements, bare plurals, embedded interrogatives, and
statements about the future involving will. See Gajewski 2005, as well as other references in
footnote 27, for a comprehensive discussion.

27 Homogeneity is the subject of a large and active debate. For some relevant work, see Fodor 1970,
Löbner 1985, Von Fintel 1997, Gajewski 2005, Malamud 2012, Magri 2014.
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6.2 The analogy with plural descriptions

Most theories take plural expressions in language to denote pluralities (also
called ‘plural individuals’). For current purposes, we can take pluralities to be
sets of atomic individuals.28 Plural terms denote sets of individuals: e.g., Alph
and Bob denotes the set {a, b} containing the atomic individuals Alph and Bob.
Plural predicates denote sets of sets: e.g., boys denotes the set of all sets of boys
(equivalently, the powerset of the denotation of the singular boy).

Plural descriptions are treated as referring to the largest plurality29 of indi-
viduals that satisfies the predicate appearing in the description:

¹The ϕº = the (plural) individual i s.t. i is the unique maximal
individual of which ϕ(i) is true.

Hence, if Alph, Bob, and Chad are all and only the boys within the domain of
quantification, we have:

(52) ¹The boysº = {a, b,c}

This basic account is supplemented with some extra features, two of which are
relevant here.

First, plural descriptions admit of both distributive and collective readings.
These are illustrated by, respectively, (53) and (54):

(53) The boys carried a backpack
≈ For each of the boys, he carried a backpack

(54) The boys carried a piano together
≈ All of the boys jointly carried a piano

Compositionally, it is usually assumed that the distributive reading involves an
optional distributivity operator, DIST, that is adjoined to the predicate. Roughly,
the distributivity operator takes as argument a property and a plurality of indi-

28 Pluralities are sometimes understood as sets, and sometimes as mereological sums of individuals.
The locus classicus for the introduction of the sum approach is Link 2002; see also Landman
1989. Set-type approaches are presented by Hoeksema 1983 and Schwarzschild 1996, among
others (though Schwarzschild uses a kind of nonstandard set theory). The sum approach seems
dominant nowadays; I use the set approach for ease of exposition. For some useful overviews
about the semantics of plurals, see Nouwen 2014, Winter & Scha 2014.

29 More precisely, they are treated as referring to the maximal plurality of individuals satisfying
the predicate, and normally ‘maximal’ is understood as ‘largest’. This is the classical theory
derived from the work of Sharvy 1980 and Link 2002. Recently, von Fintel et al. 2014 have
given a convincing argument to the effect that the relevant measure of maximality is based on
informativity. So far as I can see, shifting to their proposal makes no difference to my account.
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viduals, and says that the property is true of each individual that is a part of the
plurality. Schematically:

¹[The Fs] DIST[Gs] º =
true iff ∀x: x is atomic and ¹Fsº(x) = 1, ¹Gsº(x) = 1

Second, distributivity operators carry a semantic presupposition that either
all the individuals picked out by the description satisfy the predicate, or they
all don’t.30 This all-or-nothing presupposition serves to capture homogeneity
effects on the distributive reading (collective readings immediately validate ho-
mogeneity).31 By negating The boys went swimming we get (via the distributivity
operator) that not all boys went swimming. Combined with the all-or-nothing
presupposition, this gets us the perceived truth conditions, i.e. that none of the
boys went swimming.

My account consists simply in importing these features to conditionals. In
a slogan: conditionals are descriptions of truthmakers. My account and its
predictions fall out immediately by switching truthmakers for individuals in the
semantics I just sketched.

To start with, if -clauses denote sets of propositions. In addition, I assume
the existence of an optional distributivity operator DISTπ, analogous to DIST

but operating over propositions. DISTπ takes as arguments a function from
propositions to truth values (i.e. the denotation of the consequent of a conditional)
and a set of propositions, and says that the function maps each proposition in
the set to true. Schematically:

¹[If ϕ] DISTπ[ψ] º = true iff ∀p: p ∈ ¹if ϕº, ¹ψº(p) = true

DISTπ is also the bearer of an all-or-nothing presupposition, again analogous to
the one in use on the distributivity operator for individuals.

DISTπ is what generates Simplification. Take our running example (2), and
assume that it has the distributive LF, represented below:

(55) [If Alice or Bob went to the party] DISTπ[would [the party be fun]]

30 Here is the entry:

¹DISTº = λP. λx x :
∀y y ≤ x x . (Atom(y y)→ P(y y))∨∀y y ≤ x x . (Atom(y y)→¬P(y y)).
∀y y ≤ x x . (Atom(y y)→ P(y y))

(Following a widespread convention, I use double variables like ‘x x ’ to range over pluralities.)
31 I should note that this is only one of the ways to capture homogeneity (for which see Von Fintel

1997, Gajewski 2005), and there is no agreement that it is the correct one. Nothing in my account
of conditionals depends on accounting for homogeneity via this route.
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The if -clause in (55) denotes the set of the propositions expressed by the two
disjuncts. DISTπ ensures that these propositions are combined individually with
the rest of the clause. The resulting truth conditions are:

(56) ∀p ∈ { Alice went, Bob went}, max�w
(p) ∈ ¹ party be fun º

Hence (2), on the parsing in (55), entails

(2) a. If Alice went to the party, the party would be fun.
b. If Bob went to the party, the party would be fun.

Since I assume that the distributivity operator is optional, again in analogy with
the semantics of plurals, I am committed to readings on which Simplification
fails. In fact, this prediction is borne out. The counterpart of collective readings
for conditionals are just examples like:

(8) If Spain had fought with the Axis or the Allies, she would have fought
with the Axis.

Hence, differently from other truthmaker theories, I do not vindicate Simplifica-
tion. But this failure is expected and descends from independently motivated
features of the theory.

Technicalities

The main innovation is letting if -clauses denote sets of propositions. To do this,
I treat if as a set-forming operator: if takes as argument a clause and a set of
alternatives, and generates a set of truthmakers for that clause.

¹ifº�,w = λp〈s,t〉. λALT . {q〈s,t〉: q is a truthmakerALT of p}

The distributivity operator DISTπ takes as argument a set of propositions and
quantifies over singletons of propositions within that set. (The quantification is
over singletons rather than over the propositions themselves for type-theoretic
reasons—this way, the input argument to the modal is of the same type whether
DISTπ is present or not.) In addition, exactly like the distributivity operator for
individuals, it carries the homogeneity presupposition. This is the lexical entry (I
use ‘P’ as a type for sets of propositions):

¹DISTπº
�,w = λΦ〈st,t〉. λSP : ∀p ∈ S. Φ({p}) = 1∨∀p ∈ S. Φ({p}) = 0.

∀p ∈ S,Φ({p}) = 1

Finally, modals appearing in conditionals work in a standard way, aside from

31



two tweaks. First, the outermost argument of a modal is a set of propositions,
rather a proposition. Second, modals ‘extract’ from their set-type argument a
proposition in the following way: they take the proposition generated by the
disjunctive closure of the propositions in the set. When the set is a singleton, the
result is just the unique proposition in the set. When the set is not a singleton,
this gets back the proposition expressed by the antecedent. The latter case is the
one that generates violations of Simplification.

For an example, here is the lexical meaning of would:

¹wouldº�,w = λSP. λp. ∀w′ ∈ max�,w(
∨

S) = 1, p(w′) = 1

7 Hyperintensionality and syntactic complexity

I started from an inconsistent triad of apparent desiderata about conditional logic:
Failure of Antecedent Strengthening, Simplification of Disjunctive Antecedent,
and Substitution of Logical Equivalents. Standard semantics for conditionals
drops Simplification and preserves the other two. My account drops both Sim-
plification and Substitution, but it is very much in the spirit of Simplification-
vindicating accounts. More in detail, my account allows for two parsings of
conditionals, in analogy with the semantics of plurals: one involves a distributiv-
ity operator, the other does not. The parsing involving a distributivity operator
vindicates Simplification, while the other doesn’t.

The main theoretical move of my account is dropping Substitution. This makes
conditionals hyperintensional: we can’t preserve truth value under substitutions
of necessarily equivalent antecedents. Pairs of conditionals exemplifying this
failure are easy to find. For example:

(57) If Anna came to the party, the party would be fun.

(58) If Anna, or Otto and Anna, came to the party, the party would be fun.

The antecedents of (57) and (58) are logically equivalent, yet (on the distributive
parsing of (58)) the two conditionals have different truth conditions.

Dropping Substitution goes against a long tradition of work on which the
semantics for conditionals is intensional. But my account also diverges from
existing hyperintensional semantics, which generally rely on a metaphysics of
fine-grained entities and drop all talk of worlds and comparative closeness.32 All
the main tools I use (possible worlds, closeness, alternatives) are already available

32 For a counterfactual semantics employing impossible worlds, see, among many, Nolan 1997. For
a semantics using states, see Fine 2012a and 2012b, as well as the version of Fine’s semantics in
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in the literature. Moreover, my notion of a truthmaker is not metaphysical, but
cognitive: truthmakers are just standard propositions; which propositions count
as truthmakers is determined on the basis of grammatical mechanisms tied to
alternatives.

The kind of hyperintensionality resulting from my view is pretty mundane.
Its source is the fact that logically equivalent sentences may have different alter-
natives. This kind of hyperintensionality is also widespread through language.
Consider:

(59) a. John only read Anna Karenina.
⇒ John did not read War and Peace.

b. John only read either Anna Karenina, or War and Peace and Anna
Karenina.
6⇒ John did not read War and Peace.

The prejacents of only in (59)-a and (59)-b are logically equivalent, yet the
two sentences have different truth conditions. Hence only is a hyperintensional
operator. This kind of hyperintensionality has its origins in grammar, rather than
in metaphysics. My main point in this paper has been that the same kind of
hyperintensionality is at work in conditionals. We have both a good conceptual
grasp of this hyperintensionality and the technical tools to model it. Incorporat-
ing it into a theory of conditionals may bring in extra complexity, but no new
ontological or explanatory costs.33

Briggs 2012.
33 [Acknowledgments suppressed for blind review.]
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